Release Note

Release Date : April. 2020

Product Ver. : midas Gen 2020 (v2.1) / Design+2020(v2.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Enhancements

• midas Gen

1) 優化RC柱構件設計功能	4
2) 優化歷時分析結果之能量圖顯示內容	5
3) 反力表格新增側推分析結果內容	8
4) 優化非彈性歷時分析結果之呈現方式	9
5) 優化非彈性歷時分析運算速度	11
6) 新增纖維元素之非彈性塑鉸分析結果表格	12
7) Gen-Revit 2020 轉換介面	13
8) EC8塑鉸性質新增Strength Loss功能選項	14
9) 優化磚石結構側推分析與後處理功能	15
10) 新增NTC2018規範Non-dissipative element之版設計功能	20
11) 優化EC2與NTC規範之版設計功能	21
12) 優化Non-dissipative 之設計功能	22
13) 優化非彈性材料模型	23
14) 優化EC2與NTC規範之RC梁柱接頭設計功能	24
15) 新增EN1998-3:2005與NTC2018規範之Cyclic Shear Resistance檢核	27

• midas Design+

1) 新增鋼構耐震設計工具	30
2) 新增錨定螺栓設計模組	36

1. 優化RC柱構件設計功能

Add Design by Constant P

: KCI-USD12, ACI318-14, ACI318M-14, EN1992-1-1:2004, NTC 2018, TWN-USD100, NSR-10, IS456:2000

2. 優化歷時分析結果之能量圖顯示內容

Improvement of Energy Result Graph : Energy Percentage Result of all steps

2. 優化歷時分析結果之能量圖顯示內容

Additional Damping Ratio of Energy Dissipation System is added.

ነ 🚅 🕯		2 14	a.h A 🖅 🖪 🗛 🗂 🚍	I 🖳 I 🔞
01				· = •
102	TIME HISTORY ANALYSIS ADDITIONAL DAMPING RATIO ; TIME HISTO	JRY LUADCA	55E NU. = 	
005 006 007 008	Energy Graph		Additional Damping Ratio (%)	
009	(1) Dissipated Inelastic Energy [Inealstic Hinge]	Eh	1.196	
)11)12	(2) Maxwell Damper Energy [Oil Damper]	Em	2.149	
)14)15	(3) Velocity Dependent Device Energy	Ev	0.000	
)16	(4) Strain Dependent Device [Steel Hyst. Isolator]	Et	2.959	
)18)19)20	(5) Isolator Device Energy Total Dampoing Ratio	Eo	4.559 + 5.001	
u ady			Ln 21 / 21 , Col	10 CAP NUM
ady	Energy Percentage Tex: Result		Ln 21 / 21 , Col	10 CAP NUM
ady	Energy Percentage Tex : Result Final Step All Step	[N fii	[Ln 21 / 21 , Col lew] Additional Dam nal step	10 CAP NUM
ady	Energy Percentage Tex c Result Final Step All Step Additional Damping Raio Text Result	[N fii	[Ln 21 / 21 , Col lew] Additional Dam nal step → Click to display te	10 CAP NUM

2. 優化歷時分析結果之能量圖顯示內容

Additional Damping Ratio of Energy Dissipation System is added.

3. 反力表格新增側推分析結果內容

Reaction table is provided for each step in pushover analysis.

Reactions Deformations Forces Stresses Strains	$\mathbf{\tilde{\mathbf{n}}}$		~	FX	FY	FZ		M
Beaction Forces/Moments	4)	Load	Step	(N)	(N)	(N)	(N-1
	1	PO-X(all)	po_0140	334881 358304	-1554840 85599	-4880873	10232	0.0
Load Cases/Combinations	2	PO-X(all)	po_0140	Records	Activation Di	alog		X
PO-X 🗸	5	PO-X(all)	po_0140					
Step PO Step: 1 🗸	7	PO-X(all)	po_0140	Node or El	ement			Loadcase/Combination
Componente	8	PO-X(all)	po_0140					3 , 3, 7, 2, 1
	9	PO-X(all)	po_0140	All	None Ir	nverse	Prev	DL(ST)
	10	PO-X(all)	po_0140	Nede	1.2 Etc.2	9 AE++ 00 1	100%-154-1	LL(ST)po_0141
	11	PO-X(all)	po_0140	. Node	12 5005	2 4010 90	102101541	EX(ST) Po_0142
	12	PO-X(all)	po_0140	Select Tur	20			□ EY(ST)
Local (if defined)	13	PO-X(all)	po_0140	Jelect Typ	-			□EX_PO(ST)
Type of Display	14	PO-X(all)	po_0140	Element I	уре	\sim	Add	□ RX(RS)
	16	PO-X(all)	po_0140	TBUSS				□ RY(RS) po_0146
	17	PO-X(all)	po_0140	BEAM			Delete	RX_PO(RS)
Arrow Scale Factor: 1,000000	18	PO-X(all)	po_0140	PLANE ST	TRESS			
	19	PO-X(all)	po_0140	- PLATE		R	leplace	PO-X(PO)
Apply Close	20	PO-X(all)	po_0140	Bdd Wall (Onenina			
	21	PO-X(all)	po_0140	PLANE ST	TRAIN	✓ In	ntersect	TRY(ES)
	22	PO-X(all)	po_0140					
	23	PO-X(all)	po_0140	-				
	24	PO-X(all)	po_0140	H				
	26	PO-X(all)	po_0140					OK Cancel
	27	PO-X(all)	po_0140	-761741.962003	297560.345405	371117.7	66236	0.0
	28	PO-X(all)	po_0140	-378013.330894	316478.525536	-151551.5	10801	0.0
	29	PO-X(all)	po_0140	-247941.260380	2097.558199	430720.5	32647	Step 1. Open Records Activation Dialog box.
	30	PO-X(all)	po_0140	-118245.235881	65575.593188	-120178.4	42764	
	31	PO-X(all)	po_0140	-233357.266245	356154.463707	608703.7	94247	
	32	PO-X(all)	po_0140	8983.656902	384491.752882	-1/594/.5	04963	Step 2. Select Load case for pushover.
	45	PO-X(all) PO X(all)	po_0140	405795.493550	83820 03/023	164905.0	69632 56362	0.0
	40	PO-X(all)	po_0140	458257 789619	123466 170823	-100660.3	81189	Ctop 2 Coloot Duchever stop
	48	PO-X(all)	po 0140	423457.694260	152996.515659	-145067.4	06933	Step 3. Select Pusnover step.
	49	PO-X(all)	po_0140	436738.166864	194700.383591	-151945.0	13462	0.0
	50	PO-X(all)	po_0140	397893.204894	218742.613305	-189714.1	80162	Sten / Printout Reaction table
	51	PO-X(all)	po_0140	406184.377674	260194.829149	-195658.4	23983	
	52	PO-X(all)	po_0140	364872.604321	278137.967434	-233734.1	97300	0.0
	53 Dec -	PO-X(all)	po_0140	368834.533468	318355.582790	-239336.6	41907	0.0
	унеас	uon(G	iopai)	A Reaction(Lo	осал 🔨 Ке	action(Lo	ocal-Sum	

4. 優化非彈性歷時分析結果之呈現方式

Properties > Inelastic Properties > Inel. Control Data > Select Inelastic Hinge Result Output(Element/General Link)
 Load > Dynamic Loads > Time History Analysis Data > Global Control

Select the element to print

- Press 'Add/Replace' button after selecting element on model view

S	elect Inelastic H	linge Result Output					
0	Hinge Result C	utput Elements	•				
	Element Typ	e					
	🖲 All Type 🛛 🔿 Truss						
	🔘 Beam-Co	olumn 💿 Wall					
	Fiber Section	n Result Leach Step Diace De	lete				
	Element	Hinge Properties	Fiber				
	B1	COLUMN	0				
	B2 COLUMN O						
	60						
	B3	COLUMN	v l				
	B3 B4		0				

Global Control Setting

- Set to output selected elements

-Nonlinear Analysis Result Output Option

- -Inelastic Hinge:All each Step Output Option-
- O All Inelastic Elements
- (∗, Very Long Time Required)

```
Selected Elements in Hinge Result Output
```

- (*, Recommended)
- 💿 No Step-by-Step Results
 - (*, Max/Min Result Only : Hinge Result Table)

Select General Link to print

- Press 'Add' button after
- Selecting GL-Link

Inelastic Hinge Status Result

- Inelastic Hinge Status Inelastic Hinge Status •]...] Function -Time History Load Cases Name DYNA ▼) Step 10 -Time Function Elcent_h Type of Result Minge Status (Deform, Level) O Ductility Factor(D/D1) O Ductility Factor(D/D2) Deformation Force Status of Yielding Status of Yielding (FEMA) Performance (FEMA) Components 🔘 Ev 🔘 Fz Fx 🔘 Mx 🔘 My 🔘 Mz
 - Elements and General Links can be filtered for the output of inelastic time history analysis.
 - Analysis time can be much reduced by selecting only the desired elements/general links.

4. 優化非彈性歷時分析結果之呈現方式

Global Control Setting

- Set to Max/Min Result Only

Nonlinear Analysis Result Output Option Inelastic Hinge : All each Step Output Option All Inelastic Elements (*, Very Long Time Required) C Selected Elements in Hinge Result Output (*, Recommended) No Step-by-Step Results (*, Max/Min Result Only : Hinge Result Table) Fiber Section : All each Step Output Option Common with Inelastic Results Option All Inelastic Elements (*, Not Recommended : Very Long Time Required) Selected Elements in Hinge Result Output

No Step-by-Step Results (*, Max/Min Result Only : Fiber Result Table)

Inelastic Hinge Status Result

- Check Max/Min result output

Step

5. 優化非彈性歷時分析運算速度

• Reduction of analysis time by optimizing the inelastic time history analysis and improving the output algorithm for analysis results

6. 新增纖維元素之非彈性塑鉸分析結果表格

• Results > Results Tables > Inelastic Hinge > Fiber Beam Summary, Fiber Wall Summary

Fiber	Beam S	ummar	V											
Flamont	Section	Hata	ial Load			0.51		Minir	num		Maximum			
Element	Position	Mater	ai	Load		Cell	ε		Ti	me/Step	٤		Time/Step	
						Ma	aximum and Minimu	im Strains at	Each Section	1				
					Co	ncrete					Ste	el		
Element	Section	Load		Minimum			Maximum			Minimum			Maximum	
			Cell	3	Time/Step	Cell	3	Time/Step	Cell	3	Time/Step	Cell	ε	Time/Step
1	1-pos	DYNA	212	-1.31090e-003	3.080	2	4.51657e-003	3.090	234	-1.13533e-003	3.080	226	4.34048e-003	3.090
1	2-pos	DYNA	212	-3.65713e-004	2.990	212	6.49857e-004	6.050	234	-3.42752e-004	2.990	234	6.24902e-004	6.050
1	3-pos	DYNA	2	-2.26298e-004	3.100	212	3.83368e-004	2.660	229	-2.16190e-004	3.100	234	3.66219e-004	2.660
2	1-pos	DYNA	212	-4.33781e-004	2.080	212	1.16795e-003	5.950	234	-3.94597e-004	2.080	234	1.12444e-003	5.950
2	2-pos	DYNA	212	-1.60712e-004	2.180	212	4.11072e-004	4.560	234	-1.52268e-004	2.180	234	3.95087e-004	4.560
2	3-pos	DYNA	2	-3.94532e-004	3.060	212	7.49057e-004	3.060	226	-3.59973e-004	3.060	234	7.14507e-004	3.070
3	1-pos	DYNA	224	-2.35641e-004	2.890	212	9.42264e-004	5.950	235	-2.18520e-004	2.890	234	9.07028e-004	5.950
3	2-pos	DYNA	2	-1.55364e-004	3.060	212	2.61186e-004	2.360	226	-1.46279e-004	3.060	234	2.51061e-004	2.360
3	3-pos	DYNA	2	-4.04808e-004	3.020	212	1.01659e-003	3.030	226	-3.62026e-004	3.020	234	9.73654e-004	3.030
\Fiber E	Beam Su	mmary /						<						

Fiber Wall Summary

Change	WallID	Section	Mate	sial	Lord		Call		Mini	mum			М	aximum	
Story	waind	Position	Mater	lai	Load		Cell	٤		Time/Step		ε		Time/Step	
							Maximur	n and Minimum Stra	ains at Each	Section					
						Co	ncrete			Steel					
Story	Wall ID	Section	Load		Minimum			Maximum			Minimum			Maximum	
				Cell	ε	Time/Step	Cell	3	Time/Step	Cell	ε	Time/Step	Cell	3	Time/Step
1F	1	1-pos	DYNA	1	-9.39160e-004	2.680	15	2.81189e-001	2.680	17	-7.11083e-004	2.360	24	2.80383e-001	2.680
1F	1	2-pos	DYNA	1	-8.67644e-004	2.680	15	1.67658e-001	2.680	17	-7.19437e-004	2.450	24	1.67176e-001	2.680
1F	1	3-pos	DYNA	1	-6.64995e-004	2.680	15	6.16266e-003	2.680	17	-6.45485e-004	2.680	24	6.14315e-003	2.680
1F	1	4-pos	DYNA	1	-4.82424e-004	2.680	15	2.32626e-003	2.680	17	-4.74398e-004	2.680	24	2.31824e-003	2.680
1F	1	5-pos	DYNA	1	-4.11744e-004	2.680	15	1.77338e-003	2.680	17	-4.05500e-004	2.680	24	1.76714e-003	2.680
2F	1	1-pos	DYNA	1	-4.08757e-004	2.680	15	1.77946e-003	2.660	17	-4.02511e-004	2.680	24	1.77321e-003	2.660
2F	1	2-pos	DYNA	1	-3.63986e-004	2.680	15	1.50301e-003	2.660	17	-3.58657e-004	2.680	24	1.49767e-003	2.660
2F	1	3-pos	DYNA	1	-2.97825e-004	2.680	15	1.15894e-003	2.660	17	-2.93668e-004	2.680	24	1.15478e-003	2.660
2F	1	4-pos	DYNA	1	-2.47810e-004	2.680	15	9.54822e-004	2.660	17	-2.44377e-004	2.680	24	9.51387e-004	2.660
2F	1	5-pos	DYNA	1	-2.21425e-004	2.680	15	8.47144e-004	2.660	17	-2.18374e-004	2.680	24	8.44092e-004	2.660
3F	1	1-pos	DYNA	1	-2.19067e-004	2.680	15	8.53079e-004	2.670	17	-2.16011e-004	2.680	24	8.50018e-004	2.670
3F	1	2-pos	DYNA	1	-1.99154e-004	2.680	15	7.72331e-004	2.670	17	-1.96387e-004	2.680	24	7.69557e-004	2.670
3F	1	3-pos	DYNA	1	-1.62067e-004	2.690	15	6.20154e-004	2.690	17	-1.59832e-004	2.690	24	6.17919e-004	2.690
\Fiber \	Nall Sun	nmary /							<						

7. Gen-Revit 2020 轉換介面

Gen-Revit Link

- File > Import > midas Gen MGT File
- File > Export > midas Gen MGT File

	Functions	Revit <> Gen
	Structural Column	\diamond
	Beam	<>
Linear	Brace	<>
Elements	Curved Beam	>
	Beam System	>
	Truss	>
	Foundation Slab	<>
	Structural Floor	<>
Planar	Structural Wall	<>
Elements	Wall Opening & Window	>
	Door	>
	Vertical or Shaft Opening	>
	Offset	>
	Rigid Link	>
	Cross-Section Rotation	>
	End Release	>
Boundary	Isolated Foundation Support	>
	Point Boundary Condition	>
	Line Boundary Condition	>
	Wall Foundation	>
	Area Boundary Condition	>
	Load Nature	>
	Load Case	>
Load	Load Combination	>
LUau	Hosted Point Load	>
	Hosted Line Load	>
	Hosted Area Load	>
Other	Material	<>
Parameters	Level	>

8. EC8塑鉸性質新增Strength Loss功能選項

Insert Strength loss option for EC8 hinge type

Improvement about Masonry pushover analysis and post processing

1) Printout "q*" value in Text Output

Improvement about Masonry pushover analysis and post processing

0.05

De

100 120 140

1an 2nn 22r DU

2)Calculation for Target Displacement in Masonry as per NTC 2018

Updating 'My' in Masonry with Pier hinge Type

• Default values of D/H will change depending on the building type..

Updating 'My' in Masonry with Spandrel Type

- Building type is added, i.e. New Buildings, Existing Buildings.
- Default values of D/H will change depending on the building type.

Add/Modify Pushover Hinge Properties	×	Directional Properties of Pushover Hinge : FEMA		×	Default Values	of D/H	
Name : Descrip Element Type Beam/Column OWall Orruss OGeneral Link OPrint Soring Stranget	tion : Material Type ORC / SRC (encased) Steel / SRC (lind) @ Memory Plate	Input Method Shape of FEMA Curve Auto-Calculation © User Input OPerfect Plastic Type Unloading Stiffness Type	Strength Loss Yes No Figure	Type of I-End & J-End Symmetric Asymmetric	Point	New Building	Existing Building
O Point Opting Gopport Definition O Pier Type Spandrel Type	Hinge Type Skeleton Model Fiber Model	Properties Type	Primary Curve	✓ Figure	c	0.008	0.015
Axial-Moment Interaction Type None P-M Interaction P-M-M in Status Determination	Fiber Section Auto Generation © User Defined Section :	✓ User Defined M/MY D/H -E -0.3 -E -0.018 -D -0.015 -D -0.015	0.75		D	0.008	0.015
Axial-Shear Interaction Type of RC None P-0 Interaction Component Properties Component Hinge Location Fx Center FEMA Fy Center FEMA Fp2 Center FEMA	keleton Curve	-C -0.015 -B -1 -B A 0 A B 1 B C 1.001 C C 1.001 C D 0.3 D 0.015 E 0.3 E 0.018	-ors -ors	(-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	Masonry Properties Building Type O New Buildings	() Exis	×
IMu Center FEMA IMu I&J-end FEMA IMu I&J-end FEMA Vield Surface Properties Fema	Masonry Properties OK Cancel Apply	Vield Strength (MY) (*) (*) 1 1 N·mm Vield Rotation (DV) User Defined (*) 0 (*) [rad]	Life Safety (LS) Collapse Prevention (CP) Initial Stiffness © 6E/L O User [0] Elastic Stiffness :	C 2EI/L	Regular Type Horizontal Compress Shear Strength in abs Hp	○ Irreg ve Strength (fhd) ence of Vertical Loads (fvk0	4.5 N/mm² 0.2 N/mm² 100000 N
		Unloading Stiffness Parameter Exponent in Unloading Stiffness Calculation 0,4 Pinching-Rule Factor (0≤3×≤1,0) 0.5		OK Cancel			OK Cancel

Updating Fz in Masonry with Spandrel hinge Type

• Improvement of formula for shear resistance in irregular type

Add/Modify Pushover Hinge Properties		×	Masonry Properties		\rightarrow Shear Resistance =
Name : Descri	ption :				
Element Type	Material Type Wal ORC / SRC (encased) O Steel / SRC (filled) Masonry	I Type Membrane Plate	Building Type O New Buildings	Existing Buildings	Min. [$V_t = ht f_{vko}, V_p = 2M_u/l$]
Definition	Hinge Type				$H_{a} \cdot h(H_{a})$
O Pier Type	Skeleton Mod	el	Regular Type	🗌 Irregular Type	Where $M_{u} = \frac{1}{2} \left[1 - \frac{1}{0.85 \cdot f_{u} \cdot h \cdot t} \right]$
 Spandrel Type 	O Fiber Model		Horizontal Compressive Str	ength (fhd) 4.5 N/mm²	una y
Axial-Moment Interaction Type	Fiber Section	ned	Shear Strength in absence	of Vertical Loads (fvk0) 0,2 N/mm²	(i) $0.4 \cdot f_{kd} \cdot h \cdot t$
O P-M-M in Status Determination	Section :	~	Но	100000 N	H (ii) H · Ilser Defined Value
Axial-Shear Interaction Type of RC	Fiber Name :	~			in the second se
None P-Q Interaction	Out-of-plane Nonlinearity of Fibe	er Wall			minium value
Component Properties				OK Cancel	
Component Hinge Location S	Skeleton Curve				
Fx Center V FEMA	 Proper 	ties			
Fy Center FEMA	V Proper	ties			
Mx Center V FEMA	 Proper 	ties			
⊠ My I&J-end ∨ FEMA	~ Proper	ties			
Mz I&J-end V FEMA	V Proper	ties		→ Shear Resistance =	
neio Sonace Propenies	Masonry Properces		_		
	OK Cancel	Apply		$V_t = L \times T \times$	$1.5f_{vko}/\beta \times \sqrt{1+P/1.5f_{vko}}$
				where	
				$\int = 1.5 : 1.5 \le J$	7/L
				$\beta_{j} = H/L; 1.0$	< H/L <1.5

10. 新增NTC2018規範Non-dissipative element之版設計功能

Non-dissipative element design is added for slab.

11. 優化EC2與NTC規範之版設計功能

Two checks are added, i.e. "Check ratio of x/d" and "Check Stress by Quasi-permanent Load combinations".

Per le travi continue, le travi di telai in cui possono essere trascurati gli effetti del secondo ordine e le solette, il rapporto x/d nelle sezioni critiche non deve comunque superare il valore 0,45 per fa ≤ 50 MPa e 0,35 per fa > 50 MPa.

12. 優化Non-dissipative 之設計功能

Approximate Method is added : M'_{yd} = Reduction factor * M_{Rd}

Bending Moment Capacity		Beam D	esign Report
	END-I	MID	END-J
(-) Load Combination No.	21	21	5
Moment (M_Ed)	141604.88	59413.77	134663.44
Factored Strength (M_Rd)	152013.72	84276.96	123768.52
Check Ratio (M_Ed/M_Rd)	0.9315	0.7050	1.0880
Neutral Axis (x/d)	0.1670	0.1172	0.1445
(+) Load Combination No.	5	5	21
Moment (M_Ed)	99836.64	63882.84	96479.04
Factored Strength (M_Rd)	84427.01	84276.96	84489.36
Check Ratio (M_Ed/M_Rd)	1.1825	0.7580	1.1419
Neutral Axis (x/d)	0.1150	0.1172	0.1157
Elastic Bending Moment C	apacity (for Non-Diss	sipative Element) END-J
(-) Load Combination No.	53	53	37
Moment (M.Ed)	101482.80	38922.76	96260.94
Elastic Strength (M.yd')	143255.27	74502.94	112471.78 🧲
Check Ratio	0.7084	0.5224	0.8559
	07	07	50
(+) Load Combination No.	37	J/	53
Moment (M.Ed)	59714.55	43391.82	58076.53
Elastic Strength (M.yd')	74757.76	74502.94	74901.73
Check Ratio	0.7988	0.5824	0.7754

13. 優化非彈性材料模型

"Partial Safety Factor" is introduced in the Inelastic Material Model.

• Apply partial safety factors to the fiber model for pushover analysis and generate M-C curve for the design of nondissipative elements

14. 優化EC2與NTC規範之RC梁柱接頭設計功能

Improvement of the check for hoop spacing in joint design

14. 優化EC2與NTC規範之RC梁柱接頭設計功能

Joint Design as per EC and NTC

→ Improvement in the check a hoop area and spacing in Joint design

14. 優化EC2與NTC規範之RC梁柱接頭設計功能

Joint Design as per EC and NTC

• An option is added to choose Confined' or 'Not confined' joint condition.

15. 新增EN1998-3:2005與NTC2018規範之Cyclic Shear Resistance檢核

Check of Cyclic shear Resistance under ULS Design

• Design > result > Concrete Design > Cyclic Shear Resistance

shover Design Query Tools										
Section for Design			Result 1	able for	Cyclic s	hear Re	sistance	checkin	g	
Concrete Design 🔻							Cyclic Shea	r Resistance	;	
Concrete Design	Elem	Location	Seismic	Load		VRy			VRz	
Section	Lion	Element		Demand	Capacity	Remark	Demand	Capacity	Remark	
	Confidenc	e Factor = 1.	20, qd = 1.50	, le = 1.50			·			
lic Shear Resistance Parameters	Press right	t mouse butto /Combination	on and click " N/Confidence	Set Cyclic Sł Factor/Displ	ear Resistar acement Beh	nce Paramete navior Factor	rs' menu to Importance I	change Factor		
Set Cyclic Shear Resistance Parameters	353	I-end	Primary	ALL COME	18.0504	496.6250	ОК	25.3188	430.5590	OK
	353	J-end	Primary	ALL COME	18.0504	382.5840	ОК	25.3188	285.4860	OK
Load Case/Combination ALL COMBINATION	Demand	: Design	Shear Fo	rce <						
Cyclic Shear Resistance Table Type Show Selected Elements Show All Elements	Capacity	v : V _R by E	Equation I	below <mark><</mark>	<					
	A.3.3 Be	ams, co	lumns al	nd walls:	shear					
Confidence Factor 1.2 Displacement Behavior Factor(qd) 1.5	$V_{\rm R} = \frac{1}{\gamma_{\rm el}}$	$\frac{h-x}{2L_{\rm V}}\min($	N; 0,55A _c	$f_{c})+(1-0,0)$	05 min(5; µ	r ^{pl}))√[0,161	max(0,5;10	$(0\rho_{tot}) \left(1-0\right)$	$0,16\min(5;$	$\left(\frac{L_{\rm V}}{h}\right) \int \sqrt{f_{\rm c}}$
Importance Factor(Ie)	Demand Demand	≤ Capac > Capac	ity → O.K ity → N.G		<u> </u>					
Cancer	* Only	RC be	am and	l columr	n is sup	ported	in Gen 2	2020 v2	.1	

15. 新增EN1998-3:2005與NTC2018規範之Cyclic Shear Resistance檢核

Check of Cyclic shear Resistance under Pushover analysis

• Pushover > Pushover Hinge Result > Cyclic Shear Resistance

Set Cyclic Shear Resistance Parameters

Set Cyclic Shear Resistance Parameters X
Pushover Load Case
PO-X ~
Step for Demand
◯ Life Safety (SLV)
◯ Collapse Prevention (SLC)
● User Defined 23 ~
Cyclic Shear Resistance Table Type
 Show Selected Elements
O Show All Elements
Confidence Factor 1.0 ~
OK Cancel

			Result	t Table fo	r Cyclic s	shear R	esi	stance o	hecking		
								Cyclic Sh	ear Resistance	•	
	Flom	Location	Seismic	Load		VR	у			VRz	
	LIGIII	Location	Element	LUad	Demand	Сара	city	Remark	Demand	Capacity	Remark
	Step for De	mand = USE	R (Step 23),	Confidence f	factor = 1.0	0					
	Press right	mouse butto	n and click 'S	Set Cyclic Sh	ear Resista	nce Para	mete	rs' menu t	o change step	or loadcase	
1	95	I-end	Primary	PO-X	42166.900	13707	9.00	0	K 3501.6800	149689.00	OK
	95	J-end	Primary	PO-X	42166.900) 14799	4.00	0	K 3501.6800	136127.00	OK
	De Ca A.3 V _R De	mand : Departure of the pacity is V_R 3.3 Beams $= \frac{1}{\gamma_{el}} \left[\frac{h - x}{2L_V} \right]$ mand $\leq Ce$	sign Shear by Equation $S, columnsmin(N; 0,5)apacity \rightarrow 0$	Force on below s and wall $\delta A_{\rm c} f_{\rm c}) + (1 - 0.K)$	< (s: shear 0,05 min(5)	$(\mu_{\Delta}^{\text{pl}})) = 0$,16 m	ax(0,5;10	$0\rho_{tot})\left(1-0,16\right)$	$\min\left(5;\frac{L_V}{h}\right)$	$\int \sqrt{f_{\rm c}} A_{\rm c} + V_{\rm w}$

* Only RC beam and column is supported in Gen 2020 v2.1

計算側向支承之軸力強度

AISC

1b. Point Bracing

In the direction perpendicular to the longitudinal axis of the beam, the required strength of end and intermediate point braces is

$$br = 0.02 \left(\frac{M_r C_d}{h_o} \right) \tag{A-6-7}$$

and, the required stiffness of the brace is

$$b_{d} = \frac{1}{\phi} \left(\frac{10M_{r}C_{d}}{L_{br}h_{o}} \right)$$
(LRFD) (A-6-8a)

$$\phi = \Omega \left(\frac{10M_r C_d}{L_{br} h_o} \right) \text{ (ASD)}$$

$$\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)}$$

where

- L_{br} = unbraced length adjacent to the point brace, in. (mm)
- M_r = largest of the required flexural strengths of the beam within the unbraced lengths adjacent to the point brace using LRFD or ASD load combinations, kip-in. (N-mm)

When the unbraced lengths adjacent to a point brace have different M_r/L_{br} values, the larger value shall be used to determine the required brace stiffness.

For intermediate point bracing of an individual beam, L_{br} in Equations A-6-8a or A-6-8b need not be taken less than the maximum effective length, L_b , permitted for the beam based upon the required flexural strength, M_r .

Koran code (LSD)

(b) When $\frac{P_r}{P_r} < 0.2$

 $\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right)$

bracing

$$\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0$$

計算側向支承之軸力強度 Beam Brace Design Variables Brace Strength Brace Force Use Sect. øMn Bracing Mr (kN.m) Pbr (kN) CHK ho (mm) ßbr (kN/m Lb (m) Lb (m) øMn (kN.m) øPn (kN) Use DB Use DB Shape Name Material Shape Туре Cb Cd Name Material Ratio H Section H 400x200x8/13 SS275 4.00 Angle 2 L 100x7 SS275 2.00 Nodal Bracing 7 1.00 1000.00 2.000 277.60 387.00 0.7 28.69 4782.0 148.38 OK(0.09 Г H Section 1.00 Nodal Braing • 418.27 436.00 0.75 2.37 25582.57 195.93 OK(2098 ▼ H 450x200x9/14 SS275 1.00 Angle ~ L 100x7 SS275 1.00 0.00 2.000 7 ▼ 1.00 2.000 472.73 482.00 0.75 39.23 26153.53 195.93 OK(0 Г ₩ H 496x 199x9/14 SS275 1.00 Angle L 100x7 SS275 1.00 Nodal Bracing 0.00 200) H Section Axial strength of brace (it is defined by the user) Nodal Brace $\rightarrow P_{br} = 0.02 \left(\frac{M_r C_d}{h_o} \right) \bullet$ Relative Brace $\rightarrow P_{br} = 0.02 \left(\frac{M_r C_d}{h_o} \right) \bullet$ [Combination stress check] (a) When $\frac{P_r}{P_c} \ge 0.2$ $\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$ (b) When $\frac{P_r}{P_c} < 0.2$ $\left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0$ P_r $\overline{2P_c}$ In here, Mr/Mc = 0 Because a brace does not have a moment Pr = Pbr

 $Pc = \phi Pn$

Flexural strength of beam (it is defined by the user)

設計連桿梁加勁板

9.1-75

4. Link Stiffeners for I-Shaped Cross Sections

Full-depth web stiffeners shall be provided on both sides of the link web at the diagonal brace ends of the link. These stiffeners shall have a combined width not less than $(b_f - 2t_w)$ and a thickness not less than the larger of $0.75t_w$ or $\frac{1}{2}$ in. (10 mm), where b_f and t_w are the link flange width and link web thickness, respectively.

Links shall be provided with intermediate web stiffeners as follows:

- (a) Links of lengths $1.6M_p/V_p$ or less shall be provided with intermediate web stiffeners spaced at intervals not exceeding $(30t_w d/5)$ for a link rotation angle of 0.08 rad or $(52t_w d/5)$ for link rotation angles of 0.02 rad or less. Linear interpolation shall be used for values between 0.08 and 0.02 rad.
- (b) Links of length greater than or equal to $2.6M_p/V_p$ and less than $5M_p/V_p$ shall be provided with intermediate web stiffeners placed at a distance of 1.5 times b_f from each end of the link.
- (c) Links of length between $1.6M_p/V_p$ and $2.6M_p/V_p$ shall be provided with intermediate web stiffeners meeting the requirements of (a) and (b) in the preceding.

Intermediate web stiffeners shall not be required in links of length greater than $5M_p/V_p$.

Seismic Provisions for Structural Steel Buildings, July 12, 2016 American Institute of Steel Construction

Sect. F3.]

ECCENTRICALLY BRACED FRAMES (EBF)

Intermediate web stiffeners shall be full depth. For links that are less than 25 in. (630 mm) in depth, stiffeners shall be provided on only one side of the link web. The thickness of one-sided stiffeners shall not be less than t_w or % in. (10 mm), whichever is larger, and the width shall not be less than $(b_f/2) - t_w$. For links that are 25 in. (630 mm) in depth or greater, intermediate stiffeners with these dimensions shall be provided on both sides of the web.

設計連桿梁加勁板

2. 新增錨定螺栓設計模組 (ACI 318)

- 適用規範: ACI318-14(M),11(M),08(M),NSR-10
- 預埋式/後置式錨栓之間距、抗拉與抗剪強度以及組合應力比檢核

	ଲି କ mida	s Design + 2020 - [D:\00.2020년\00.3월(muss)\422626\f]	- 0 X
Image: State Search Column Shear Reinford WorkBar Add new member System Reinford Type Anchor Bolt Name Option Option Add Cesps Procedure Solar RC Steel Steel SRC Add new comber Control Add new context Add Option Columin Contentext Scolum General Scolum General Scolum Scolum Option Scolum Scolum Gonbined Scolum Scolum	Image: State Section Section	s beign + 2020 - [D:\00.2020 ⁴ U0.3 B(muss)/422626V]	
Footing Footing Footing Footing Footing Footing Footing Sources Sources Star Contel/Bracket Management Wal Management Management Wal Management Management W	Message	NISTAL TYCE Pest-Installed Acebo Ba ANCHOR INFO 25-12 (ASE L=6) ANCHOR INFO 25-12 (ASE L=6) Create Save A5 Print List	Implementation Implementation Implementatition <

2. 新增錨定螺栓設計模組 (ACI 318)

貓定螺栓設計程序

Sectio

Section Force Anchor Layout							
Material							
Concrete	27 🗸	MPa					
Anchor Bolt	KS-B-1016-4.6	•					
🔲 Light Weight Conc	Light Weight Concrete						
Factor	1 -]					
Plate Section							
Left	80.00	mm					
Right	80.00	mm					
Тор	80.00	mm					
Bottom	80.00	mm					
Thickness	6.00	mm					
RC Section							
Crack	O Uncrack						
▼ Left	120.00	mm					
🔽 Right	120.00	mm					
🔽 Тор	120.00	mm					
Ø Bottom	120.00	mm					
Thickness	500.00	mm					
Grout	5.00	mm					

hor Layout	
500.00	kN
10.00	kN.m
20.00	kN.m
30.00	kN
40.00	kN
5.00	kN.m
	500.00 10.00 20.00 30.00 40.00 5.00 Combinations (1)

Force

Step 2. 定義設計外力.

(Axial, Moment, Shear, Torsion)

Section Force And	hor	Layout						
Anchor								
Install Type	•	Cast-In-Place	Anchor I	•				
Anchor Type	ŀ	Headed Stud		-				
Diameter		M12						
Length (hef)	1	180.00	mm					
Pullout Strength (Np)) 🗄	30.00	kN					
Dist. of J/L-Bolt (eh)		30.00	mm					
Strength Reduction F	acto	or						
Concrete, Tension	0	0.650		•				
Concrete, Shear	C	0.750		•				
Anchor, Tension	C).750		Ŧ				
Anchor, Shear	C	0.650		•				
Design								
Breakout Strength C	oeffi	icient (kc)						
	1	10.000		Ŧ				

Anchor

Section Force	Anchor Layout	
Layout Type	Grid Type	
Space (Int. x)	130.00 🚖 mr	n
Space (Int. y)	100.00 mr	n
Space (Ext. x)	100.00 mr	n
Space (Ext. y)	100.00 mr	n
Num. of Row	3	
Num. of Col	2	

Layout

Step 4.

定義錨栓的佈置方式以及數量與間距

Step 3.

定義錨栓資訊.

預埋式錨栓:Headed Stud / Headed Bolt/Hooked Bolt(L/J) 後置式錨栓:

Expansion(Torque, Displacement), Undercut, Adhesive anchors

Step 1. 定義混凝土與錨栓材料以及構件配置資訊

2. 新增錨定螺栓設計模組 (ACI 318)

Summary Calculation Report

Reduired edge distances, spacings, and thicknes		e enimuna tellure		
,	ses to preciud	c spinning railare		
Category	Value	Criteria	Ratio	Note
Minimum spacing of anchors (mm)	100	72.00	0.720	s _{req} / s _{min}
Minimum edge distances (mm)	-	-	-	-
Limit of embedment depth (mm)	-	-	-	-
?) Tensile strength				
Category	Nua	Nn	N _{ua} / (ø N _n)	Note
Steel strength* (kN)	0.000	33.72	0.000	ø = 0.750
Concrete breakout strength** (kN)	0.000	0.000	0.000	ø = 0.650
Pullout Strength* (kN)	0.000	50.38	0.000	ø = 0.650
Concrete side-face blowout strength** (kN)	-	-	-	-
* anchor having the highest loading				
** anchor group (anchors in tension)				
** anchor group (anchors in tension))) Shear strength				
** anchor group (anchors in tension)) Shear strength Category	Vus	Vn	V _{ue} /(øV _n)	Note
	Vus 8.333	Vn 26.98	Vus/(sVn) 0.475	Note ø = 0.650
** anchor group (anchors in tension))) Shear strength Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN)	Vue 8.333 15.00	Vn 26.98 41.67	Vus/(øVn) 0.475 0.480	Note ø = 0.650 ø = 0.750
** anchor group (anchors in tension))) Shear strength Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN)	Vus 8.333 15.00 13.33	Vn 26.98 41.67 34.73	V _{us} / (ø V _n) 0.475 0.480 0.512	Note ø = 0.650 ø = 0.750 ø = 0.750
** anchor group (anchors in tension) i) Shear strength Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN)	Vus 8.333 15.00 13.33 -	Vn 26.98 41.67 34.73 -	Vus/(sVn) 0.475 0.480 0.512 -	Note ø = 0.650 ø = 0.750 ø = 0.750 -
** anchor group (anchors in tension) i) Shear strength Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN) * anchor having the highest loading	Vus 8.333 15.00 13.33 -	Vn 26.98 41.67 34.73 -	Vus/(sVn) 0.475 0.480 0.512 -	Note ø = 0.650 ø = 0.750 ø = 0.750 -
** anchor group (anchors in tension) b) Shear strength Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN) * anchor having the highest loading ** anchor group (relevant anchors)	Vue 8.333 15.00 13.33 -	Vn 26.98 41.67 34.73	Vus/(oVn) 0.475 0.480 0.512 -	Note Ø = 0.650 Ø = 0.750 Ø = 0.750 –
** anchor group (anchors in tension))) Shear strength Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN) * anchor having the highest loading ** anchor group (relevant anchors) t) Combined Ratio	Vue 8.333 15.00 13.33 -	Vn 26.98 41.67 34.73 -	Vus/(oVn) 0.475 0.480 0.512 -	Note ø = 0.650 ø = 0.750 ø = 0.750 -
** anchor group (anchors in tension)) Shear strength Category Steel strength* (kN) Concrete breakout strength** (Dir. X) (kN) Concrete breakout strength** (Dir. Y) (kN) Concrete pryout strength** (kN) * anchor having the highest loading ** anchor group (relevant anchors) Combined Ratio Category	Vue 8.333 15.00 13.33 - Value	Vn 26.98 41.67 34.73 -	Vus/(oVn) 0.475 0.480 0.512 -	Note ø = 0.650 ø = 0.750 ø = 0.750 - Note

Detail Calculation Report

(1) Minimum center-to-center spacing of anchors $\frac{s_{min} + s_{min} + s_{$	Calculation Summary (Required edge of	listances, spacings, and thicknesses	to preclude splitting failure)						
Semin Series Series / Series / Semin 100mm 72.00mm 0.720 • Semin = 100mm Series = 6 dg = 72.00mm 0.720 • Semin = 100mm > Series = 72.00mm> O.K (2) Check Distance from Concrete Edge to Center of Anchor Bolt Post-installed anchors only. (3) The limitations on the value of here Expansion or undercut post-installed anchors only. (4) The critical edge distance (c_{sc}) Post-installed anchors only. (4) The critical edge distance (c_{sc}) Post-installed anchors only. 13. Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (3) Concrete breakout strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • a = 0.650 • u_a = min(f_{cas} , 1.9 f_{as} , 860.0) = 400MPa • A_{astv} = 84.30mm ² For cast-in headed stud anchor • V_{sageot} = 0.8 Vsa = 28.98kN • V_{sageot} = 0.8 Vsa = 28.98kN • V_{sageot} = 0.8 Vsa = 26.98kN • V_{sageot} = 0.475 < 1.0 - 0.K (2) Calculate Concrete Break-Out Strength (KDS 14 20 54 : 2016, See. 4.4.2] • a = 0.750 • d_a = 1.000mm • A = 1.000m	(1) Minimum center-to-center spacing of anchors								
100mm 72.00mm 0.720 • smn = 100mm sms = 6 ds = 72.00mm 0.K • sms = 100mm > sms = 72.00mm → 0.K (2) Check Distance from Concrete Edge to Center of Anchor Bolt Post-installed anchors only. (3) The limitations on the value of her Expansion or undercut post-installed anchors only. (4) The critical edge distance (csc) Post-installed anchors only. (3) Chacutate Shear Strength 73. Calculate Shear Strength 73. Calculate Shear Strength 73. Calculate Strength (3) Concrete breakout strength (4) The critical edge distance (csc) <i>For</i> Cast-in headed stud anchor (1) Calculate Strength of Steel [<i>KDS</i> 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • ø = 0.850 • fug = min(fug , 1.9fyg , 860.0) = 400MPa • Age, v [ag = 33.72kN (n = 1) Where anchors are used with built-up grout pads • Vsg = 0.8 Vsg = 28.98kN • Vsg = 0.8 Vsg = 28.98kN • Vsg = 0.750 • g = 0.750 • dg = 12.00mm • Age = 12.00mm • Age = 12.00	Smin Sreq Sreq / Smin								
• $s_{min} = 100mm$ • $s_{ma} = 6 d_{g} = 72.00mm$ • $s_{min} = 100mm > s_{max} = 72.00mm \rightarrow 0.K$ (2) Check Distance from Concrete Edge to Center of Anchor Bott Post-installed anchors only. (3) The limitations on the value of h_{ef} Expansion or undercut post-installed anchors only. (4) The critical edge distance (c_{ac}) Post-installed anchors only. 13. Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • $p = 0.650$ • $f_{us} = min(f_{us} , 1.9f_{us} , 860.0) = 400MPa$ • $A_{acv} = 84.30mm^2$ For cast-in headed stud anchor • $V_{us} = n A_{acv} f_{us} = 33.72kN (n = 1)$ Where anchors are used with built-up grout pads • $V_{us} = 0.8T_{us} = 26.98kN$ • $V_{us} ((V_{us}) = 0.475 < 1.0 \rightarrow 0.K$ (2) Calculate Concrete Break-out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • $p = 0.750$ • $d_{a} = 12.00mm$ • $\lambda = 1.000$	100mm	72.00mm	0.720						
 s_{ins} = 6 d_s = 72.00mm s_{min} = 100mm > s_{ins} = 72.00mm → 0.K (2) Check Distance from Concrete Edge to Center of Anchor Bott <i>Post-installed anchors only.</i> (3) The limitations on the value of h_{ef} <i>Expansion or undercut post-installed anchors only.</i> (4) The critical edge distance (c_{ac}) <i>Post-installed anchors only.</i> 13. Calculate Shear Strength <i>Failure modes for anchors.</i> (<i>Shear loading</i>) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength <i>Calculation Summary</i> (<i>Shear strength</i>) (1) Calculate Strength of Steel [<i>KDS</i> 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • <i>g</i> = 0.650 • f_{uta} = min(f_{uta}, 1.9f_{ye}, 360.0) = 400MPa • A_{kexv} = 84.30mm² <i>For cast-in headed stud anchor</i> • V_{se} = n A_{sexv} f_{uta} = 33.72kN (n = 1) Where anchors are used with built-up grout pads • V_{sespot} = 0.8 V_{se} = 28.98kN • V_{usi} / (<i>e</i> V_{ses}) = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [<i>KDS</i> 14 20 54 : 2016, See. 4.4.2] • <i>g</i> = 0.750 • d_g = 12.00mm • λ = 1.000 Where an is the lead barrier leasth of the explore for barrier 	• s _{min} = 100mm								
 s_{min} = 100mm > s_{test} = 72.00mm → 0.K (2) Check Distance from Concrete Edge to Center of Anchor Bolt Post-installed anchors only. (3) The limitations on the value of h_{st} Expansion or undercut post-installed anchors only. (4) The critical edge distance (c_{sc}) Post-installed anchors only. 13. Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • ø = 0.650 • f_{ust} = min(f_{ust}, 1.9f_{ys}, 860.0) = 400MPa • A_{sex} v = 84.30mm² For cast-in headed stud anchor • V_{ust} = n A_{sex} V_{ust} = 33.72kN (n = 1) Where anchors are used with built-up grout pads • V's_{segnot} = 0.8 V_{ss} = 26.98kN • V_{ust} / (@ V_{ss}) = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • ø = 0.750 • d_{st} = 12.00mm • λ = 1.000 	 s_{req} = 6 d_a = 72.00mm 								
 (2) Check Distance from Concrete Edge to Center of Anchor Bolt <i>Post-installed anchors only.</i> (3) The limitations on the value of h_{et} <i>Expansion or undercut post-installed anchors only.</i> (4) The critical edge distance (o_e) <i>Post-installed anchors only.</i> (3) Calculate Shear Strength <i>Failure modes for anchors.</i> (<i>Shear loading</i>) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength (3) Concrete breakout strength (3) Concrete breakout strength (4) Calculate Strength of Steel (<i>KD</i> 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • e = 0.650 • f_{urs} = min(f_{urs} , 1.9f_{urs} , 860.0) = 400MPa • A_{rex} = 84.30mm² <i>For cast-in headed stud anchor</i> • V_{urs} = 0.8EV_{urs} = 26.98kN • V_{urs} = 10.8EV_{urs} = 26.98kN • V_{urs} / (eV_{urs}) = 0.475 < 1.0 - 0.K (2) Calculate Concrete Break-Out Strength [<i>KDS</i> 14 20 54 : 2016, See. 4.4.2] • e = 0.750 • d_u = 12.00mm • λ = 1.000 	 s_{min} = 100mm > s_{reg} = 72.00mm → 	0.К							
Post-installed anchors only. (3) The limitations on the value of her Expansion or undercut post-installed anchors only. (4) The critical edge distance (c_{sc}) Post-installed anchors only. (5) Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • $a = 0.650$ • $f_{uts} = min(f_{uts}, 1.9f_{ys}, 860.0) = 400MPa$ • $A_{sc,V} = 84.30mm^2$ For cast-in headed stud anchor • $V_{ss} = n A_{sc,V} f_{uts} = 33.72kN (n = 1)$ Where anchors are used with built-up grout pads • $V_{uts,V} = (a V_{uts}) = 0.475 < 1.0 \rightarrow 0.K$ (2) Calculate Dreak-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • $a = 0.750$ • $d_s = 12.00mm$ • $\lambda = 1.000$	(2) Check Distance from Concrete Edge to (Center of Anchor Bolt							
 (3) The limitations on the value of het Expansion or undercut post-installed anchors only. (4) The critical edge distance (csc) Post-installed anchors only. (3) Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • ø = 0.650 • fuse = min(fus, 1.9fys, 860.0) = 400MPa • Asacv = 84.30mm² For cast-in headed stud anchor • Vss = n Asacv fus = 33.72kN (n = 1) Where anchors are used with built-up grout pads • Vrssgrout = 0.8 Vss = 26.98kN • Vrssgrout = 0.8 Vss = 26.98kN • Vss 1/ 0 Vss = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • ø = 0.750 • ds = 12.00mm • λ = 1.000	Post-installed anchors only.								
Expansion or undercut post-installed anchors only. (4) The critical edge distance (c_{sc}) Post-installed anchors only. 13. Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • $e = 0.650$ • $f_{uts} = \min\{f_{uts}, 1.9f_{us}, 860.0\} = 400 MPa$ • $A_{uts} = 84.30mm^2$ For cast-in headed stud anchor • $V_{uts} = n A_{uts} V_{uts} = 33.72kN (n = 1)$ Where anchors are used with built-up grout pads • $V_{uts} / (e V_{uts}) = 0.475 < 1.0 \rightarrow 0.K$ (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • $e = 0.750$ • $d_a = 12.00mm$ • $\lambda = 1.000$	(3) The limitations on the value of her								
 (4) The critical edge distance (c_{sc}) <i>Post-installed anchors only.</i> 13. Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] ● = 0.650 f_{ute} = min(f_{ute} , 1.9f_{ute} , 860.0) = 400MPa A_{sex}v = 84.30mm² <i>For cast-in headed stud anchor</i> V_{ss} = n A_{sex}V_{tus} = 33.72kN (n = 1) Where anchors are used with built-up grout pads ∨ V_{ssignout} = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] ● = 0.750 d_a = 12.00mm × A = 1.000 	Expansion or undercut post-installed a	anchors only.							
Post-installed anchors only. 13. Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • $\mathfrak{g} = 0.650$ • $\mathfrak{f}_{u2} = \min(\mathfrak{f}_{u2}, 1.9\mathfrak{f}_{u3}, 860.0) = 400 MPa$ • $A_{u2v} = 84.30 mm^2$ For cast-in headed stud anchor • $V_{u3v} = n A_{u2v} V_{u2v} = 33.72kN (n = 1)$ Where anchors are used with built-up grout pads • $V_{u3upout} = 0.8 V_{u3v} = 26.98kN$ • $V_{u3v} = (0 \ 8 V_{u3v} = 26.98kN)$ • $V_{u3v} = (0 \ 8 V_{u3v} = 26.98kN)$ • $V_{u3v} = (0 \ 8 V_{u3v} = 26.92kN)$ • $V_{u3v} = (0 \ 8 V_{u3v} = 26.92kN)$ • $V_{u3v} = 0.475 \le 1.0 \rightarrow 0.K$ (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • $\mathfrak{g} = 0.750$ • $\mathfrak{d}_{g} = 12.00mm$ • $\lambda = 1.000$	(4) The critical edge distance (cec)								
13. Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • $g = 0.650$ • $f_{u2} = min(f_{u2}, 1.9f_{y2}, 860.0) = 400MPa$ • $A_{u2v} = 84.30mm^2$ For cast-in headed stud anchor • $V_{u2} = n A_{u2v} f_{u2} = 33.72kN (n = 1)$ Where anchors are used with built-up grout pads • $V_{u2grout} = 0.8 V_{u2} = 26.98kN$ • $V_{u21} / (g V_{u2}) = 0.475 < 1.0 \rightarrow 0.K(2) Calculate Concrete Break-Out Strength[KDS 14 20 54 : 2016, See. 4.4.2]• g = 0.750• d_g = 12.00mm• \lambda = 1.000$	Post-installed anchors only.								
13. Calculate Shear Strength Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • $\mathfrak{g} = 0.650$ • $f_{uts} = \min(f_{uts}, 1.9f_{us}, 860.0) = 400 MPa$ • $A_{uts} = 84.30 mm^2$ For cast-in headed stud anchor • $V_{uts} = n A_{uts,V} f_{uts} = 33.72 kN (n = 1)$ Where anchors are used with built-up grout pads • $V_{uts,V}^{casprot} = 0.8 V_{uts} = 26.98 kN$ • $V_{uts,V}^{casprot} = 0.475 < 1.0 \rightarrow 0.K$ (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • $\mathfrak{g} = 0.750$ • $d_g = 12.00 mm$ • $\lambda = 1.000$									
Failure modes for anchors. (Shear loading) (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • $\mathfrak{o} = 0.650$ • $f_{uts} = \min(f_{uts}, 1.9f_{ys}, 860.0) = 400 MPa$ • $A_{uts,v} = 84.30 mm^2$ For cast-in headed stud anchor • $V_{uts} = n A_{uts,v} f_{uts} = 33.72 kN (n = 1)$ Where anchors are used with built-up grout pads • $V_{uts,v} = 0.8 V_{uts} = 26.98 kN$ • $V_{uts,v} / (\mathfrak{o} V_{uts}) = 0.475 < 1.0 \rightarrow 0.K$ (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • $\mathfrak{g} = 0.750$ • $d_g = 12.00 mm$ • $\lambda = 1.000$	13. Calculate Shear Strength								
 (1) Steel strength (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] ø = 0.650 futa = min(futa, 1.9fya, 860.0) = 400MPa A_{bex} v = 84.30mm² For cast-in headed stud anchor V₅₅ = n A₅₂, V₅₅ = 23.72kN (n = 1) Where anchors are used with built-up grout pads V₅₅₈grout = 0.8 V₅₅ = 26.98kN V₅₅₈grout = 0.8 V₅₅ = 26.98kN V₅₅₁ / (Ø V₅₅) = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] ø = 0.750 d₈ = 12.00mm λ = 1.000 	Failure modes for anchors. (Shear load	ling)							
 (2) Pullout Strength (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] ø = 0.650 futs = min(futs , 1.9fys , 860.0) = 400MPa A_{betv} = 84.30mm² For cast-in headed stud anchor V₄₅ = n A₆₅v (t₄₅ = 33.72kN (n = 1) Where anchors are used with built-up grout pads V_{558grout} = 0.8 V₅₅ = 26.98kN V_{558grout} = 0.8 V₅₅ = 26.98kN V₅₅₁ / (@ V₅₅) = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] ø = 0.750 d₈ = 12.00mm λ = 1.000 	(1) Steel strength								
 (3) Concrete breakout strength Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] <u< th=""><th>(2) Pullout Strength</th><th></th><th></th></u<>	(2) Pullout Strength								
Calculation Summary (Shear strength) (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] • $\mathfrak{o} = 0.650$ • $\mathfrak{f}_{uts} = \min(\mathfrak{f}_{uts}, 1.9\mathfrak{f}_{us}, 860.0) = 400 MPa$ • $A_{se,v} = 84.30 mm^2$ For cast-in headed stud anchor • $V_{5s} = n A_{se,v} \mathfrak{f}_{uts} = 33.72 kN (n = 1)$ Where anchors are used with built-up grout pads • $V_{sespoot} = 0.8 V_{ss} = 28.98 kN$ • $V_{uts1} / (\mathfrak{o} V_{5s}) = 0.475 \le 1.0 \rightarrow 0.K$ (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • $\mathfrak{g} = 0.750$ • $d_{\mathfrak{g}} = 12.00 mm$ • $\lambda = 1.000$	(3) Concrete breakout strength								
 (1) Calculate Strength of Steel [KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1] <	Calculation Summary (Shear strength)								
$[KDS 14 20 54 : 2016, See. 4.4.1, ref. ACI 318-14 17.5.1]$ • g = 0.650 • f _{uts} = min(f _{uts} , 1.9f _{ys} , 860.0) = 400MPa • A _{bex,v} = 84.30mm ² For cast-in headed stud anchor • V _{ss} = n A _{se,v} f _{uts} = 33.72kN (n = 1) Where anchors are used with built-up grout pads • V [*] _{ssgrout} = 0.8 V _{ss} = 26.98kN • V _{iss} (g V _{ss}) = 0.475 < 1.0 \rightarrow 0.K (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • g = 0.750 • d _g = 12.00mm • $\lambda = 1.000$	(1) Calculate Strength of Steel								
 ø = 0.850 f_{uts} = min(f_{uts} , 1.9 f_{js} , 860.0) = 400MPa A_{bst.V} = 84.30mm² For cast-in headed stud anchor V_{ss} = n A_{st.V} f_{uts} = 33.72kN (n = 1) Where anchors are used with built-up grout pads V[*]_{ss.2000} = 0.8 V_{ss} = 26.98kN V_{ust.} / (ø V_{ss}) = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [<i>KDS</i> 14 20 54 : 2016, See. 4.4.2] ø = 0.750 d_a = 12.00mm λ = 1.000 	[KDS 14 20 54 : 2016, See. 4.4.1, ref	ACI 318-14 17.5.1]							
 f_{uts} = min(f_{uts}, 1.9f_{is}, 860.0) = 400MPa A_{st.V} = 84.30mm² For cast-in headed stud anchor V_{ss} = n A_{st.V} f_{uts} = 33.72kN (n = 1) Where anchors are used with built-up grout pads V[*]_{ss.grout} = 0.8 V_{ss} = 26.98kN V[*]_{ss.grout} = 0.8 V_{ss} = 26.98kN V[*]_{uss.l} / (or V_{ss}) = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [<i>KDS</i> 14 20 54 : 2016, See. 4.4.2] o = 0.750 d_s = 12.00mm λ = 1.000 	• ø = 0.650								
 A_{se,V} = 84.30mm² For cast-in headed stud anchor V_{ss} = n A_{se,V} f_{ute} = 33.72kN (n = 1) Where anchors are used with built-up grout pads V[*]_{ssgrout} = 0.8 V_{ss} = 26.98kN V_{usl} / (o V_{ss}) = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [<i>KDS</i> 14 20 54 : 2016, See. 4.4.2] o = 0.750 d_s = 12.00mm λ = 1.000 	 f_{uta} = min(f_{uta}, 1.9f_{ya}, 860.0) = 4001 	MPa							
For cast-in headed stud anchor • $V_{ss} = n A_{ss,V} f_{uts} = 33.72kN (n = 1)$ Where anchors are used with built-up grout pads • $V_{ssgroot} = 0.8 V_{ss} = 26.98kN$ • $V_{us,1} / (o V_{ss}) = 0.475 < 1.0 \rightarrow 0.K$ (2) Calculate Concrete Break-Out Strength [<i>KDS</i> 14 20 54 : 2016, See. 4.4.2] • $o = 0.750$ • $d_s = 12.00mm$ • $\lambda = 1.000$	 A_{seV} = 84.30mm² 								
 V_{ss} = n A_{ss,V} f_{uts} = 33.72kN (n = 1) Where anchors are used with built-up grout pads V[*]_{ss,grout} = 0.8 V_{ss} = 26.98kN V_{usi} / (Ø V_{ss}) = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [<i>KDS</i> 14 20 54 : 2016, See. 4.4.2] Ø = 0.750 d_s = 12.00mm λ = 1.000 	For cast-in headed stud anchor								
Where anchors are used with built-up grout pads • $\nabla_{ssgrout} = 0.8 V_{ss} = 26.98 kN$ • V_{usl} / (σV_{ss}) = 0.475 < 1.0 \rightarrow 0.K (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] • $\sigma = 0.750$ • $d_s = 12.00mm$ • $\lambda = 1.000$	 Vsa = n Asev futa = 33.72kN (n = 1) 								
 V[*]_{ssgrot} = 0.8 V_{ss} = 26.98kN V_{is1} / (Ø V_{ss}) = 0.475 < 1.0 → 0.K (2) Calculate Concrete Break-Out Strength [<i>KDS</i> 14 20 54 : 2016, See. 4.4.2] Ø = 0.750 d_s = 12.00mm λ = 1.000 	Where anchors are used with huilt-un	arout pads							
 V_{us1} / (Ø V_{ss}) = 0.475 ≤ 1.0 → O.K (2) Calculate Concrete Break-Out Strength [KDS 14 20 54 : 2016, See. 4.4.2] Ø = 0.750 d_s = 12.00mm λ = 1.000 	 V'reasons = 0.8 Vrs = 26.98kN 	Ø E							
(2) Calculate Concrete Break-Out Strength [<i>KDS</i> 14 20 54 : 2016, See. 4.4.2] • <i>a</i> = 0.750 • d _a = 12.00mm • λ = 1.000	• $V_{rel} / (\alpha V_{rel}) = 0.475 \le 10 \rightarrow 0 \text{ K}$								
[KDS 14 20 54 : 2016, See. 4.4.2] • ø = 0.750 • d _a = 12.00mm • λ = 1.000	(2) Calculate Concrete Break-Out Strength								
 φ = 0.750 d_a = 12.00mm λ = 1.000 	IKDS 14 20 54 · 2016 See 4 4 2 1								
• d _a = 12.00mm • λ = 1.000	• a = 0.750								
 A = 1.000 A = 1.000 	• d. = 12.00mm								
 A = 1.000 Manual is the least backing length of the support functions 	- 3g = 12.000mm								
	→ A = 1.000	4							
	 I_ = min(8d_a, h_{ef}) = 96.00mm 								

